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ABSTRACT

The aim of this study was to characterize the short-

term land-cover change processes that were de-

tected in Eastern Africa, based on a set of change

metrics that allow for the quantification of inter-

annual changes in vegetation productivity, changes

in vegetation phenology and a combination of

both. We tested to what extent land use, fire

activity and livestock grazing modified the vegeta-

tion response to short-term rainfall variability in

East Africa and how this is reflected in change

metrics derived from MODerate Imaging Spec-

trometer (MODIS) time series of remote sensing

data. We used a hierarchical approach to disen-

tangle the contribution of human activities and

climate variability to the patterns of short-term

vegetation change in East Africa at different levels

of organization. Our results clearly show that land

use significantly influences the vegetation response

to rainfall variability as measured by time series of

MODIS data. Areas with different types of land use

react in a different way to interannual climate

variability, leading to different values of the change

indices depending on the land use type. The impact

of land use is more reflected in interannual vari-

ability of vegetation productivity and overall

change in the vegetation, whereas changes in

phenology are mainly driven by climate variability

and affect most vegetation types in similar ways.

Our multilevel approach led to improved models

and clearly demonstrated that climate influence

plays at a different scale than land use, fire and

herbivore grazing. It helped us to understand

dynamics within and between biomes in the study

area and investigate the relative importance of

different factors influencing short-term variability

in change indices at different scales.

Key words: MODIS; land use; multilevel model;

East Africa; human impact; climate variability.

INTRODUCTION

Time series of satellite data have long been used to

study land-cover changes at global to regional

scales. One of the major challenges is to distinguish

between changes linked to interannual climate

variability and land-cover changes induced by

anthropogenic processes. These climatic, geomor-

phic and anthropogenic processes interact in a

complex and dynamic way, and lead to a wide

range of ecosystem responses at different scales

(Nicholson 2001). Both a quantification of the

magnitude of change as well as a characterization

of the change processes are required to unravel the

driving forces of change and their effects on land-

cover dynamics (Vanacker and others 2005). Many

studies have linked interannual variability in veg-

etation activity to climate variability such as rainfall

anomalies and ENSO events (for example, Daven-
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port and Nicholson 1993; Anyamba and Eastman

1996; Eklundh 1998; Plisnier and others

2000;Vanacker and others 2005). However, little is

known about the interactions between human land

use and the short-term variability of vegetation

activity at regional scales. Until now, the hierar-

chical organization of ecosystems, human activi-

ties, and their interactions at different levels, from

the landscape to the region, has largely been ig-

nored in remote sensing studies. Processes at these

different levels are interdependent. Factors oper-

ating at one level of the hierarchy might influence

processes at a higher or lower level, and should

thus be analyzed simultaneously.

The aim of this study was to identify the hu-

man influence on short-term land-cover changes

that were detected in Eastern Africa based on a

set of change metrics that allow quantification of

interannual changes in vegetation productivity,

changes in vegetation phenology and a combina-

tion of both (Linderman and others 2005).

Vanacker and others (2005) showed that several

ecosystems in sub-Saharan Africa are highly sen-

sitive to short-term rainfall variability. We tested

to what extent land use, fire activity and livestock

grazing modify the vegetation response to short-

term rainfall variability in East Africa and how

this is reflected in the change metrics developed

by Linderman and others (2005). We used land-

cover change metrics derived from 3 years of 1

km resolution, bidirectionally corrected reflec-

tance values of MODerate Imaging Spectrometer

(MODIS) data (2000–2003) (Schaaf and others

2002) in combination with data on rainfall, land

use, fire activity, livestock density, human popu-

lation density and conservation status of the land.

We used a hierarchical approach to disentangle

the contribution of human activities and climate

variability to the patterns of short-term vegetation

change in East Africa at different levels of eco-

system organization. The data were aggregated

into units of similar pedomorphological charac-

teristics (referred to as landforms), which served

as the first level of analysis in the multilevel

regression. The biomes as defined by White

(1983) were used as the second level of analysis.

Mixed models were used to estimate the propor-

tion of different aspects of change in land cover

that could be explained by anthropogenic and

climatic factors at the landform and biome levels.

This hierarchical approach allows the comparison

of the different scales at which climate, topogra-

phy, land-use/land-cover and soil characteristics

influence interannual variability in vegetation

activity and dynamics.

BACKGROUND

It has proven to be very difficult to disentangle the

effects of climate variability and human land use in

remote sensing time series. With the availability of

increasing time series of geometrically accurate,

atmospherically corrected MODIS data, possibilities

to study the interactions between land use and

climate factors at the landscape scale have opened

up. The MODIS sensors aboard the Terra and Aqua

platforms now provide daily global coverage at 250

m to 1 km resolution. The improved radiometric

and geolocation accuracy of these sensors provides

data particularly suited for detailed regional studies

of land-cover change (Huete and others 2002).

Most studies investigating the link between in-

terannual AVHRR-NDVI variability and driving

forces of this variability focused on one particular

potential correlate. Several studies demonstrated

positive correlations between Normalized Differ-

ence Vegetation Index (NDVI) anomalies and

ENSO events in East Africa (for example, Anyamba

and Eastman 1996; Myneni and others 1996;

Nicholson and Kim 1997; Anyamba and others

2002). Davenport and Nicholson (1993) analyzed

annual integrated NDVI-rainfall associations for ten

vegetation formations in East Africa and found a

strong similarity between temporal and spatial

patterns of NDVI when annual rainfall is below

about 1,000 mm and monthly rainfall does not

exceed approximately 200 mm. In this range, NDVI

was found to be a sensitive indicator of the inter-

annual variability of rainfall. However, Eklundh

(1998) cautions that the correlations between AV-

HRR-NDVI and rainfall become much weaker

when one looks at monthly or 10 day time scales.

On average, only 10% of the variation in 10-day

NDVI values could be explained by concurrent and

preceding rainfall, and up to 36% for monthly data.

Vanacker and others (2005) linked rainfall vari-

ability to short-term land-cover change derived

from MODIS time series and found that indices of

rainfall variability (total annual rainfall and change

in rainfall seasonality) were positively related to

the magnitude of land-cover change. Physiognomic

vegetation types were found to react in specific and

distinct ways to short-term fluctuations in rainfall,

with grasslands and shrublands being particularly

sensitive to short-term rainfall variability, and for-

est and woodlands being more resilient.

Another body of work investigated the impact of

agricultural land use, fire and conservation on eco-

system functioning. Annual profiles, seasonality and

interannual variability in integrated AVHRR-NDVI

have been studied for areas under agriculture (small
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grain crops, row crops and irrigation) and were

compared to profiles for rangelands in North and

South America. Agricultural practices reduce the

interannual variability of the NDVI signal and

change the seasonality of the signal, even if the an-

nual integrated NDVI (iNDVI) for crops and range-

lands remains comparable (Guershman and Paruelo

2005; Paruelo and others 2001). Eva and Lambin

(2000) linked fire activity to land-cover changes in

different ecosystems in Africa and South America.

They found that fires play different roles within the

different components of landscape mosaics and at

different times of land-cover change trajectories. The

impact of fires on vegetation was found to be mainly

controlled by land use. Other studies have shown

that fire changes the iNDVI and seasonality of a

rangeland for up to two seasons (Wessels and others

2004; Snyman 2004). A comparison of vegetation

changes as measured with AVHRR-NDVI times ser-

ies (1982–1994) for different types of protected areas

in Tanzania demonstrated that the protection status

of national parks and game reserves had a positive

impact on vegetation health compared to baseline

unprotected areas. Woody vegetation regenerated

over the 13 year period (Pelkey and others 2000).

However, none of these studies looked at the

relative importance of different factors of change in

the vegetation signal, nor did they take into ac-

count the organization of ecosystems at different

levels, from the landscape to the region. Studies

looked at variability within biomes, but ignored the

variability across biomes, whilst both are related,

and factors operating at one level of the hierarchy

might influence processes at a higher or lower le-

vel. Turner and others (2001) define hierarchy in

landscape ecology as being a system of intercon-

nections wherein the higher levels of organization

constrain the lower levels to various degrees. These

levels of organization operate across different spa-

tial and temporal scales, with different processes

being more important at different scales. We

hypothesize that climate acts at the global to re-

gional scales to determine vegetation patterns and

dynamics. At landscape to local scales, topography

and land use determine how vegetation reacts to

rainfall variability, whilst soil characteristics play

this role at even lower levels of the hierarchy.

Recognition of the importance of cumulative

environmental effects has resulted in increased

recognition of the necessity of analyzing ecosystem

dynamics at multiple spatial scales. Such analysis

requires the definition of a multi-level hierarchy of

nested spatial entities for which explicit relation-

ships and interactions can be specified (MacMillan

and others 2004).

Multilevel models were developed in the 1980s

and found their first applications in the social sci-

ences, which have focused on the effects of the

social context on individual behavior (for example,

Aitkin and others 1981; Raudenbush and Bryk

1986). More recently, multilevel models have

found applications in ecology (for example, Pear-

son and others 2004; Wu and David 2002; Noda

2004) and land-use science (Polsky and Easterling

2001; Hoshino 2001; Pan and Bilsborrow 2005).

We have defined spatial entities at two levels of

organization: the landform level, nested in the

biome level. We investigated the relative impor-

tance of climate factors on the one hand, and hu-

man impact factors such as land use, fire regime,

livestock and human population density, and

conservation on the other hand, and estimated the

influence of each factor at the landform level but

also how they vary at the biome level. For this, we

applied a multilevel regression model. Multilevel

models operate at more than one level or scale

simultaneously. This represents a considerable

improvement over the usual single-level models by

allowing relationships to vary from place to place,

and according to context (Jones 1991).

STUDY AREA

We focused on East Africa, covering Uganda,

Kenya, Tanzania, Burundi, Rwanda, southern Su-

dan, and eastern Democratic Republic of Congo

(28�04¢E – 43�46¢E; 5�55¢N – 12�38¢S, Figure 1).

The area straddles the equator, covers a wide range

of vegetation types and is characterized by high

interannual variability in rainfall and vegetation

activity. The region has a complex climate pattern,

with unimodal and bimodal rainfall distributions

occurring in different parts of the study area.

Rainfall variability is high, with average annual

rainfall varying between 240 and 2,340 mm per

year throughout the study area. Topography varies

considerably from vast plains areas to steep slopes

on the flanks of the highest mountains on the

African continent (Mt. Kilimanjaro, Mt. Kenya and

Mt. Elgon). It is one of the few regions in Africa for

which recent, consistent and reliable land-cover/

land-use data are available at a fine spatial resolu-

tion through the Africover project (FAO 2002).

DATA

Land-cover Change Indices

For this study, we used MODIS collection 4

Nadir Bidirectionally Adjusted Reflectance (NBAR)
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visible bands (MOD43B4 product) for East Africa

from February 2000 until April 2004. From the

NBAR values we computed the Enhanced Vegeta-

tion Index (EVI) values for each 16 day period

(Linderman and others 2005). EVI is a spectral in-

dex similar to the widely used NDVI. Like NDVI,

EVI is sensitive to vegetation characteristics such as

chlorophyll activity, the fraction of absorbed pho-

tosynthetically active radiation, leaf area index

(LAI), canopy type and plant physiognomy (Huete

and others 2002). A conservative mask was used

excluding cloud, noise and pixels with unreliable

BRDF correction, which generally removed pixels

from analysis in regions consistently clouded such

as coastal areas of East Africa (Linderman and

others 2005). Calendar years do not typically cor-

respond to the growing seasons. Therefore, to

compare annual changes in seasonal vegetation

activity, the start of the time series for each pixel

was defined based on the midpoint between the

start of all growing seasons and end of the previous

growing seasons. This provided a 3 year data set

with each pixel adjusted to the chosen start of the

year. A reference year, defined as the median value

of the three yearly EVI values for each period, was

extracted from the three full years for each pixel, to

provide a baseline of vegetation activity relative to

the time period studied. Comparing data for a given

year to a reference year is akin to removing the

annual cycle and examining anomalies from mean

conditions. Three years is a short period, but is used

here as a sample to represent patterns of interan-

nual variability in land-cover conditions for a range

of ecosystems.

Three indices were developed to measure differ-

ences for each pixel between the annual profile for

a given year and that of the reference year. The

sum of the absolute values of the change vector

(SCV) provides a linear measure of the combined

changes due to differences in the phenology and/or

annual integrated vegetation index (iEVI) com-

pared to the reference year, where n is the number

of time steps i in year 1 and I is the vegetation index

value at each given time step. The calculation is

conducted for year pairs, with 1 the reference year

and 2 the off year.

Zambia

Sudan

DR Congo

Ethiopia

Tanzania

Kenya

SomUganda

Burundi

Rwanda

1:13,000,000

Figure 1. Study area (1:13,000,000).
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SCV ¼
Xn

i¼1

I2 � I1ð Þi
�� �� ð1Þ

Changes due only to differences in the annual

iEVI are measured using the absolute difference in

the integrated vegetation indices (DIV). Changes in

iEVI can be the result of changes in the length of

the growing season and/or in the magnitude of

within-season EVI.

DIV ¼
Xn

i¼ 1

I2ð Þi �
Xn

i¼1

I1ð Þi

" #�����

����� ð2Þ

The seasonal shift index (SSI) measures differ-

ences in phenology such as shifts in the start or end

of the growing season or in the timing of EVI re-

sponse within the season that do not affect the

differences in the annual iEVI.

SSI¼ SCV�DIV ð3Þ

The change for a given pixel was expressed as the

SCV (or DIV, SSI) divided by the integrated vege-

tation index of the reference year for that pixel

(%SCV, %DIV, %SSI). For a thorough description

of the methodological issues concerning the

development of the change indices, we refer to

Linderman and others (2005). Below, when using

‘‘land-cover change‘‘, we refer to both trends and

interannual variability, and both land-cover con-

versions and modifications (Lambin and others

2003).

Landforms

Because most of our independent variables have

been collected at a coarser scale than that of the

change indices (1 km2), all data were aggregated

to the first level of our analysis. We chose areas

with similar pedomorphological characteristics as

the first level for our analyses, which we refer to

hereafter as landforms. This level captures land-

scape-scale processes. The units were derived from

the general soil constraints map for Africa, pro-

duced by the global agro-ecological assessment

(Fischer and others 2000). This map regroups

areas with similar characteristics based on slope,

soil fertility, soil texture, soil depth, drainage and

chemical constraints. Seven landform types were

identified in the study area. The size of the land-

forms varies considerably across the region, with

an average of 957 km2. The landform level is

nested within the biome level. We find similar

landforms reappearing in different biomes. Land-

forms, therefore, represent the variability in bio-

physical characteristics at the landscape level,

whereas the second level of analysis, biomes dis-

cussed below, represents these characteristics at a

regional level.

Biomes

For the stratification of the data according to

biome type, the UNESCO vegetation map of Africa

produced by White (1983) was used. The vegeta-

tion classification used is the UNESCO standard

based on physiognomy and floristic composition

(not climate), and it includes a total of 80 major

vegetation types and mosaics. The classification is

particularly relevant to this study and has already

been used in previous studies of vegetation re-

sponse to rainfall in Africa (Justice and others

1986; Nicholson and others 1990; Vanacker and

others 2005; Linderman and others 2005). Our

East African study area is characterized by 11

vegetation types (hereafter referred to as biomes),

of which 9 cover more than 1% of the region

(Table 1). These nine biomes were used as the

second level of analysis in our multilevel ap-

proach.

Land Use

Land use was derived from the Africover land-cover

map for East Africa (FAO 2002). This map was

developed through visual interpretation of Landsat-

TM satellite images and classification based on the

Land Cover Classification System (LCCS) method-

ology (Di Gregorio and Jansen 2000). The land-

cover maps have all been validated with fieldwork

and have been georeferenced to a common stan-

dard. The Africover map for East Africa consists of

50 land-cover classes. These were aggregated into

the main land-use classes of intensive herbaceous

Table 1. Vegetation Types in the Study Area
(White 1983)

Vegetation type Surface (km2) %

Altimontane 1788 0.1

Azonal vegetation 6964 0.4

Bushland and thicket 537,524 32.3

Bushland and thicket mosaics 118,754 7.1

Woodland 466,099 28.0

Woodland mosaics and transitions 29,134 1.7

Forest 52,176 3.1

Forest transitions and mosaics 316,464 19.0

Grassland 20,854 1.1

Edaphic grassland mosaics 33,877 1.7

Semi-desert vegetation 105,583 5.4

A Multilevel Analysis of the Impact of Land use



agriculture (continuous fields), subsistence herba-

ceous agriculture (scattered fields with cultivation

representing 20% or more of the surface), intensive

tree and shrub crops and plantations, scattered tree

and shrub crops, rangelands for intensive grazing

(grasslands and savannah) and rangelands for

extensive grazing (shrublands), woodlands, forests,

marginal lands (bare soil and sparsely vegetated

areas) and a miscellaneous class that consisted of

built up areas, water bodies and snow, which was

masked for the analysis. Swamps were also masked

for the analysis, as the reflectance of the water often

interferes with the vegetation signal, leading to

unreliable change indices. The polygon coverage (1/

200,000) was gridded to a resolution of 1 km2 and

the percent coverage for each land-use type was

calculated at the landform level.

Rainfall

Ten-day rainfall estimates for Africa are processed

by NOAA‘s Climate Prediction Center for the Uni-

ted States Agency for International Development

(USAID) Famine Early Warning System (FEWS)

to assist in the drought and flood monitoring

efforts for the African continent (http://www.

igskmncnwb015.cr.usgs.gov/adds/index.php). The

rainfall estimates are generated using, among other

data sources, Meteosat 7 satellite infrared data,

Global Telecommunication System (GTS) data and

cloud top temperature data (Xie and Arkin 1996;

Herman and others 1997). As it was done with EVI

data, annual time series of rainfall data were de-

fined in such a way that they were centred on the

rainy season for each pixel. The start of the rainfall

year, as opposed to the onset of the rainfall season,

was defined for each pixel as the midpoint between

the start of the rainfall season and the end of the

previous rainfall season (Linderman and others

2005). As the change indices were based on three

full years of data with the same start of the year for

a given pixel, the start of the rainfall year for a pixel

is not necessarily the same as the start of the EVI

profile for that same pixel. Hence, lags in vegeta-

tion response to rainfall are taken into account on a

pixel by pixel basis. Three indices of rainfall vari-

ability for the period 2000–2004 were developed

and used in this study. The average total annual

precipitation (TAP) was calculated at the biome

level. The deviation from the TAP at the landform

level (TAPdev) was calculated as the difference

between TAP and the mean annual rainfall for the

landform. The rainfall variability is the sum of the

differences in rainfall for each decade in a given

year and the corresponding decade in the reference

year, which was calculated as the 10 year average

rainfall per decade over the period 1994–2004. The

mean of the rainfall variability over 3 years is cal-

culated at the landform level.

Seasonality

Distributions of uni- and bimodal seasons were

based on maps developed by Corbett and others

(1995). These authors examined the ratio of pre-

cipitation to potential evapotranspiration (P/PE) for

each month and identified consecutive months

above a minimum ratio of 0.50. Because much of

eastern Africa has a bimodal rainfall pattern, they

then identified which of the two seasons had a

higher P/PE ratio. The characterization criterion of

P/PE greater than 0.50, although arbitrary, is a rea-

sonable indicator of conditions that are approaching

climatological suitability for crop production.

Fire Frequency

To analyze the impact of fires on land cover inter-

annual variability, the 8 day active fire summary

products from MODIS data (MOD14A2/MYD14A2)

were used. Fire detection was performed using a

contextual algorithm (Giglio and others 2003) that

exploits the strong emission of mid-infrared radia-

tion from fires (Dozier 1981; Matson and Dozier

1981). The data were adjusted for the start of the

year used in the EVI profiles. The fire frequency

index (FFI) was constructed as the sum of all active

fires detected in a 7 · 7 pixel window over the

entire study period of 3 years. The mean FFI was

calculated at the landform level.

Human Population Density

The Gridded Population of the World dataset (CIE-

SIN and others 2005) was used. Gridded Population

of the World (GPW), Version 3.0 Beta consists of

estimates of human population for the years 1990,

1995, and 2000 by 2.5 arcmin grid cells. A propor-

tional allocation gridding algorithm, utilizing more

than 300,000 national and sub-national adminis-

trative units, is used to assign population values to

grid cells. The map reflects the human population

density in 2000, based on new census data, or

interpolations of population data that rely on spatial

hybrids (Balk and Yetman 2004). The mean popu-

lation density was calculated at the landform level.

Livestock Density

Tropical livestock units per km2 (TLU) were calcu-

lated based on the combined cattle, sheep and goat

density maps (FAO 2005). The ‘‘Year 2000 Mat-
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ched Predicted Distributions‘‘ at 3 min (approx 5

km) resolution were used. The distributions were

derived from the most recently available sub-na-

tional livestock survey and census data, using a

range of agro-climatic and remotely sensed pre-

dictors in multivariate regression models. These

distributions are further corrected so that national

totals match official FAO national population levels

for the year 2000 (FAO 2005).

Protected Areas

In East Africa, protected areas cover an important

part of the territory, and include most vegetation

types. Most protected areas are wildernesses, void of

human habitation and with minimal human im-

pact. We can expect that interannual variability in

land cover in these areas is largely free of human

impact (except for controlled burning practices). At

the same time, these parks have high densities of

wild herbivores, so they are not free from grazing

pressure. The protected areas layer was derived from

the UNEP-WCMC World Database on Protected

Areas (2005). Protected areas that have no or few

restrictions on human habitation or human land use

(for example, Game Controlled Areas in Tanzania)

have not been included in the protected areas map.

Data Pre-processing

All data described above have been transformed to

a sinusoidal projection with normal Sphere and

resampled to a nominal resolution of 1 km (actual

resolution of 926.6 m). The SCV, DIV and SSI

change indices were summed over the 3 years of

the study period, to create indices that depict short-

term interannual variability of the vegetation

activity and phenology. Both for the dependent

and independent variables, the natural log was ta-

ken where necessary to normalize the distribution

of the data. All variables were aggregated to land-

form units within each of the biomes. For contin-

uous variables, the mean was calculated. For

categorical variables we used the mode. The per-

cent area covered by each land-use type and pro-

tected land was calculated. We also calculated the

mean annual rainfall per biome, because climate is

known to control vegetation cover at a higher level

in the hierarchy. All continuous independent

variables were standardized to a mean of 0 and a

standard deviation of 1.

METHODS

We analyzed the sensitivities of the change indices

to land use, human and livestock densities, fire,

conservation and climate variability at the land-

form and biome levels using statistical regression

analysis. The dependent variables are percentage

change in SCV, DIV and SSI, respectively. We fit a

hierarchical model to our data, which is a random

coefficients framework modified to account for the

issues of scale described earlier. The dependent

variable is measured at the landform (lowest) level,

and explanatory variables are introduced at both

the landform and the biome levels (Hox 2002)

(Figures 2–5). Thus, in the hierarchical model,

some explanatory variables represent biome-level

processes (that is, one average value per biome)

whereas other explanatory variables represent

landform-level processes (that is, one average value

per landform unit within a biome). Actually,

overlaying biomes on landforms produced a mosaic

of patches of adjacent pixels of the same landform i

and biome j. The maximum number of patches of

type ij is equal to seven landforms multiplied by

nine biomes, with a mean patch size of 957 km2.

Each patch has similar pedomorphological charac-

teristics and is within one biome. A preliminary

analysis of the variance (ANOVA) demonstrated

that the mean SCV, SSI and DIV values were sig-

Figure 2. Sum of the absolute values of the Change

Vector (SCV) computed from the Enhanced Vegetation

Index (EVI) values from the MODIS Nadir Bidirectionally

Adjusted Reflectance (NBAR) data for East Africa. The

figure represents the summed SCV over the 3 years of the

study period (February 2000 to April 2004) aggregated at

the landform level.
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nificantly different (p < 0.0001) across patches of

the same landform i and biome j whether one looks

at pixel-level data, or across biomes with data

aggregated at the landform level.

A multilevel framework is preferable over the

more conventional ordinary least-squares regres-

sion (OLS) approach because, with nested data,

regression coefficients may exhibit systematic spa-

tial correlations. Spatial dependence means that the

data provide less information than if they were

distributed at random as is assumed in OLS. Mis-

leading regression results are therefore likely be-

cause systematic associations reduce the effective

sample size, leading to understated standard error

estimates and elevated probabilities of a Type-I er-

ror (Snijders and Bosker 1999). A multilevel

framework takes into account spatial dependency

and thus reduces bias in the results. Full technical

details on the models can be found in Snijders and

Bosker (1999) and Hox (2002).

In our random coefficients model, landform units

are nested within biomes. In this model, both

intercepts and slopes are allowed to vary across

biomes. In general, biomes with higher intercepts

are predicted to have higher values of the depen-

Figure 3. Average total annual precipitation for the

period 2000–2004 aggregated at the biome level.

Figure 4. Rainfall variability over 3 years at the land-

form level, computed as the sum of the differences in

rainfall for each decade in a given year and the corre-

sponding decade in the reference year (defined as the 10

year average rainfall per decade over the period 1994–

2004).

Figure 5. Land use map as derived from the Africover

land-cover map for Eastern Africa (FAO 2002) and

aggregated at the landform level. For display purpose,

only the most frequent land use type per landform unit is

represented, and herbaceous and tree/shrub crops have

been merged.
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dent variable (that is, land-cover change) than bi-

omes with low intercepts. Similarly, differences in

the slope coefficient for a variable indicate that the

relationship between that variable and the depen-

dent variable is not the same in all biomes (Hox

2002). We used the restricted maximum likelihood

method (RML) to estimate the fixed and random

parts of our models.

An important statistic in OLS is the R2, which is

interpreted as the proportion of variance modelled

by the explanatory variables. In multilevel models,

there is variance at different levels, and if there are

random slopes, the concept of explained variance

has no unique definition (Hox 2002). A straight-

forward approach to examining the proportion of

explained variance consists of examining the

residual error variances in a sequence of models.

The approximate R2
1 and R2

2 estimate the proportion

of explained variance at the first and second levels,

respectively, for models with random intercepts

only.

R2
1 ¼

r2
ejb � r2

ejm
r2

ejb

" #
and R2

2 ¼
r2

u0jb � r2
u0jm

r2
u0jb

" #
ð4Þ

where r2
ejb and r2

u0jb are the residual variances for

the baseline model and r2
ejm and r2

u0jm are the

residual variances for the comparison model (Hox

2002). The intraclass correlation (ICC) is the pro-

portion of group-level variance compared to the

total variance (Hox 2002).

ICC ¼ r2
u0= r2

u0 þ r2
e

� �
ð5Þ

where r2
u0 is the highest level residual variance,

and r2
e is the lowest-level residual variance. The

multilevel models were fit using the SAS 9.1.3 proc

MIXED algorithm. Preliminary tests for multicol-

linearity were also conducted in SAS, using the

REG procedure.

Multilevel models provide information on both

between and within-level variability (random

versus fixed effects) related to the means and

trends (intercepts and slopes) across multiple

hierarchical organization levels (Polsky and East-

erling 2001) The first step in the evaluation of

multilevel models is to compare an ‘‘uncondi-

tional‘‘ null model without independent variables

and fixed intercepts:

LnSCVij ¼ b0j þ Rij ð6Þ

to a null model with intercepts considered as

random effects where the biome-dependent inter-

cept b0j is split in an average intercept c00 and the

biome-dependent deviation U0j:

LnSCVij ¼ c00 þ U0j þ Rij ð7Þ

The outcome then is essentially an ANOVA parti-

tioning of the total variation into its between (U0j )

and within-level (Rij) variability (Polsky and East-

erling 2001). The null model likelihood ratio test

indicates whether the introduction of random

intercepts leads to a significant improvement over

the null model consisting of no random effects and

a homogeneous residual error.

We then fit a series of models, testing at each step

the tenability of the hypothesized scale-based var-

iation. The first model (A) includes landform-level

intercept and slope fixed effects only, and this is

compared against models including different forms

of biome level variation (intercept and slope ran-

dom effects in models B and C). As above, com-

parisons between fixed and random effect

intercepts compare between and within-group

variability whereas differences in random and fixed

coefficients examine the difference of between-

and within-group covariate detrending.

The landform model relates landform level val-

ues of SCV, DIV or SSI change to the set of N

landform-level independent variables Xn discussed

in the data section, with n = 1,...N.

LnSCVij ¼ b0j þ RbnjXnij þ Rij ð8Þ

where i indexes the landforms, j indexes the bio-

mes and Rij is the residual at the landform level.

Model A consists only of Eq. (8). Thus, in this

model, the unit of observation is the patch of type

ij. Each biome j is assumed to have a different

intercept b0j and slope coefficient bnj.

Model B is a random intercepts model, testing

that the average change in SCV (or DIV, SSI), given

average values of the independent variables, varies

between biomes. The model combines Eqs. (8) and

(9), where the biome-dependent intercept b0j is

split in an average intercept c00 and the biome-

dependent deviation U0j :

LnSCVij ¼ c00 þ RbnjXnij þ U0j þ Rij ð9Þ

Model C is a random coefficients model, where

both the intercepts and the slopes, or regression

coefficients, are made biome dependent. Thus, in

addition to Eq. (9), the biome-dependent slope bnj

is also split in an average slope cn0 and the biome-

dependent deviation Unj :

LnSCVij ¼ c00 þ Rcn0Xnij þ U0j þ Unj þ Rij

ð10Þ

Finally, we introduced biome-level variables Zq

(that is, the explanatory variables for which there is

A Multilevel Analysis of the Impact of Land use



just one average value per biome and thus repre-

sent biome-level processes), so that the full multi-

level model D, which combines Eq. (8), (9) and

(10) is now extended to (Snijders and Bosker

1999):

LnSCVij ¼ c00 þ c10X1ij þ � � � þ cn0Xnij þ c01Z1j

þ � � � þ c0qZqj þ U0j þ Unj þ Rij

ð11Þ

RESULTS

Collinearity

Before fitting the multi-level model, the possible

influence of multi-collinearity needed to be inves-

tigated. Strongly interrelated variables can lead to

inflated estimates of standard errors, which can

lead to unjustified removal of variables from the

final analysis (Kleinbaum and others 1998). Al-

though the independent variables were correlated

to some degree, the highest variance inflation fac-

tor (VIF) was 3.7, and the largest condition index

was 8.6, both values remaining well below the

warning levels of 10 and 30 for VIF and CI for

moderate to severe collinearity (Kleinbaum and

others 1998; Woolridge 2000).

Null Model

The intraclass correlation coefficient (ICC) for the

total land-cover change null model was 0.52,

indicating substantial spatial clustering at the

biome level (Table 2). About half of the total vari-

ability in total land-cover change (SCV) values is

between biomes and half within the biome (that is,

between landforms). The null model likelihood

ratio test (v2 = 660, p <0.0001) indicated a signifi-

cant improvement over the null model consisting

of no random effects and a homogeneous residual

error. The change in vegetation productivity (DIV)

model had an ICC of 0.45 (v2 = 586, p < 0.0001).

Intraclass correlation for the phenology change

(SSI) model was 0.31, so two thirds of the vari-

ability in the data was explained at the landform

level of the model, which was considerably higher

than for the previous models, but the null model

likelihood ratio test still indicated a significant

improvement over the null model without random

intercepts (v2 = 219, p < 0.0001). This supports our

hypothesis that changes in vegetation activity and

phenology in East Africa vary considerably be-

tween biomes. In all null models, there was a sig-

nificant amount of unexplained residual variance

at the landform and biome levels.

Random Effects

We first discuss the random effects, followed by the

fixed effects for the final model. Our model B fo-

cuses on the intercepts. We found that the addition

of a random intercept for biomes to the landform

level model A significantly improved the model fit.

The AIC decreased as compared to model A and the

v2 is 287.9 (p < 0.0001), suggesting significant in-

ter-biome differences in vegetation responses to

climate variability (Table 3). Therefore, random

intercepts were retained. We further tested for

random slopes for the most significant independent

variables at the landform level, and found signifi-

cant random slopes for the rainfall variability var-

iable (v2 = 397, p < 0.0001). We tested for

correlation between random slopes and intercepts,

but this covariance was not significant.

Finally, to further explain the variation in

intercepts at the biome level, we introduced the

mean annual rainfall at biome level in the final

model D, which led to further model improvement

(decreased AIC) compared to model C (Table 3).

Not all biomes had significantly different ran-

dom intercepts and rainfall variability slopes.

Intercept and slope patterns were very similar for

the total land-cover change (SCV) and vegetation

productivity change (DIV) models. Bushland and

grassland biomes had positive intercepts for SCV

and DIV models, whereas forest and forest tran-

sition biomes had negative intercepts for these

models. Hence, the latter two biomes were sig-

nificantly less susceptible than average to inter-

annual change in total land cover and vegetation

productivity, whereas bushland and grassland

Table 2. Intraclass Correlation Coefficients for the Null Models

AIC r2
e r2

u0 ICC v2

lnSCV 1039 0.1152 0.1206 0.52 660 p < 0.0001

lnDIV 2056 0.2314 0.1893 0.45 586 p < 0.0001

lnSSI 1459 0.1543 0.06813 0.31 219 p < 0.0001
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biomes showed more than average susceptibility

to total land-cover change and changes in vege-

tation productivity.

Total Land-cover Change: SCV Model

The fixed effects for the final model (D) are given in

Table 4. The introduction of the mean annual

rainfall at biome level explained most of the

remaining variance at the biome level and further

improved the model fit, compared to model C.

We have calculated the approximate R2 at the

landform and biome levels for several explanatory

variables in the random intercepts model (model

B). We are fully aware of the limitations of these

approximate R2 values, especially when random

slopes are present in the final model (Snijders and

Bosker 1999; Hox 2002). Hence, we just use these

Table 4. Total Land-Cover Change Model (SCV), Fixed Effects at Landform and Biome Levels

Model D lnSCV model fixed effects

Effect Estimate STD DF t value Pr > |t|

Intercept )1.1139 0.03396 7 )32.8 0.0001

Protected area 0.006974 0.01069 1422 0.65 0.5142

Ln(livestock density) 0.004841 0.009485 1422 0.51 0.6098

Ln(population density) )0.01653 0.01333 1422 )1.24 0.2151

Fire frequency )0.00013 0.01211 1422 )0.01 0.9916

Continuous herbaceous crops 0.02709 0.01334 1422 2.03 0.0425

Scattered herbaceous crops 0.009973 0.0102 1422 0.98 0.3284

Continuous tree/shrub crops )0.0155 0.008525 1422 )1.82 0.0693

Scattered tree/shrub crops )0.00721 0.007822 1422 )0.92 0.3566

Intensive rangelands 0.08826 0.01271 1422 6.95 0.0001

Extensive rangelands 0.04643 0.01223 1422 3.8 0.0002

Forest )0.04269 0.00868 1422 )4.92 0.0001

Marginal lands 0.01898 0.008719 1422 2.18 0.0297

Ln(livestock dens.)*int. rangeland 0.02283 0.006997 1422 3.26 0.0011

Ln(livestock dens.)*ext.rangeland 0.02724 0.00908 1422 3 0.0027

Fire frequency*cont. herb. crops 0.04257 0.01706 1422 2.49 0.0127

Fire frequency*int. rangeland 0.0349 0.008115 1422 4.3 0.0001

Fire frequency*ext. rangeland 0.02919 0.008305 1422 3.52 0.0005

Protected area*ext.rangeland 0.03049 0.008019 1422 3.8 0.0001

Protected area*int. rangeland 0.01335 0.007316 1422 1.83 0.0682

Rainfall variability 0.1032 0.04072 8 2.53 0.0351

Deviation from mean biome rainfall )0.1238 0.007723 1422 )16.03 0.0001

Mean annual rainfall biome level )0.1686 0.02394 1422 )7.04 0.0001

Single season )0.09779 0.01786 1422 )5.47 0.0001

Double season 0 . . . .

Table 3. Model Fit Statistics for Models with Different Random Component Structures

MODEL Null (random

intercept)

A (landform

level variables)

B (landform level

variables + random

intercept)

C (landform level

variables + random

intercept & slope)

D (landform & biome

level variables + random

intercept & slope)

AIC 1038.8 771 485.7 398.5 389.9

Covariance params 2 1 2 3 3

Chi-square 287.91 397 129.89

DF 1 3 3

p 0.0001 0.0001 0.0001
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values as an indication of the explanatory power of

different sets of variables, and to compare the rel-

ative importance of different independent vari-

ables.

The climate variables had the highest explana-

tory power in the model (R2
2 = 0.33 and R2

1 = 0.29),

indicating that about 30% of the variance at both

the landform and biome levels were explained by

the climate variables introduced at the landform

level. Soil water availability is the key regulator of

plant growth in Sub-Saharan Africa, and in these

areas, total rainfall amount is a very important

indicator of vegetation productivity. Mean annual

rainfall contributed significantly at both the land-

form and the biome levels, leading to significantly

different within- and between-group regression

coefficients. Up to 83% of the variance at the biome

level was explained by the average rainfall per

biome. At both levels, the regression coefficients

were negative, hence the larger the amount of

annual rainfall, the smaller the total change in land

cover will be. Concerning rainfall variability, large

deviations from the mean rainfall for an area (po-

sitive or negative) were associated with more total

change in land cover. However, in bushland and

semi-desert biomes, the impact of rainfall variabil-

ity was attenuated in the random component of the

variable, which was negative for both biomes.

Woodland transition and edaphic grassland biomes

were particularly sensitive to rainfall deviations.

Areas with one season showed smaller total chan-

ges in land cover than areas with a bimodal rainfall

pattern.

Land use was the most important ‘‘human‘‘

factor influencing the observed total land-cover

change (Table 4). On its own, land use explained

about 17% of the variance at the landform level

and 48% of the variance at the biome level.

Compared to the average change value for wood-

lands, which was used as the reference land-use

type, total change in land cover increases with

increasing proportions of herbaceous agriculture,

rangeland and marginal lands. Only forested areas

and tree/shrub crops showed less total change in

land cover than woodlands. Rangelands had the

highest total land-cover change values, with

intensively used rangelands showing higher total

land-cover change than extensively used ones.

Other types of land use had similar total land-cover

change characteristics than woodlands. The land

use variables also explained a significant amount of

the variability at the biome level (48%), indicating

that land use varies considerably across biomes.

Most agriculture can be found in the woodland and

forest transition biomes, whereas livestock grazing

occurs mainly in the dryer biomes, such as bush-

land and grassland biomes.

None of the other human impact factors were

significant explanatory variables of total land-cover

change, but some of them had significant interac-

tions with land-use variables. The impact of live-

stock densities increases with increasing

proportions of rangelands, leading to increased to-

tal land-cover change, the effect being more

important in extensively used rangelands. Fire was

found to have significant interactions with herba-

ceous agriculture and rangelands. In all cases, in-

creased fire activity in those particular land-use

types led to increased total interannual change in

land cover. Intensively used rangelands exhibited

similar changes in SCV, regardless of their protec-

tion status. They are grazed by livestock and/or

wildlife. However, changes in SCV were larger for

extensively grazed rangelands within protected

areas than outside protected areas. The latter could

indicate different impacts of wildlife versus live-

stock grazing.

The multilevel model no longer had significant

residual variance at the biome level

(r2
u0 = 0.007193, Z = 1.46, p = 0.0720), but part of

the variance at the landform level remained

unexplained (r2
e = 0.06640, Z = 26.64,

P < 0.0001): R2
1 = 0.42, thus almost 60% of the

variance at the landform level remained unex-

plained. Compared to the OLS model (model A),

we note that the introduction of the random slopes

and intercepts has considerably reduced the con-

tribution of population density, livestock density,

protected areas, and fire frequency to the model.

The inflation of the importance of these variables in

the OLS model was probably due to spatial

dependence that has been controlled for in the

multilevel model. Re-estimating the full multilevel

model after removing the variables that were non-

significant and had no interaction effect with other

explanatory variables did not change the results.

Changes in Vegetation Productivity: DIV
Model

Because the DIV and SSI are components of the

SCV change index, we decided to test the same

model that was constructed for SCV for these two

other change metrics. This will allow for a better

understanding of which factors are more associated

with interannual change in vegetation productivity

as measured by DIV or with variability in phenol-

ogy (SSI). The random part of the model under-

went similar tests as those described above, and

resulted in an identical model D, with random
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intercepts per biome and random slopes for rainfall

variability, without covariance between random

slopes and intercepts.

Most of the fixed effects had a similar contribu-

tion to the vegetation productivity change model

(DIV) as to the total land-cover change model

(SCV), as can be seen from Table 5. The climate

variables had the largest explanatory power in the

model at both levels of the hierarchy, explaining

97% of the variance at the biome level and about

60% of the variance at the landform level. The sign

of the regression coefficients for the rainfall vari-

ables was the same as for the total land-cover

change model. The average regression coefficient

for rainfall variability was no longer significant in

the model, but the random slopes for this variable

varied significantly between biomes. The coeffi-

cients for the mean annual rainfall at the biome

level and the deviation from mean biome rainfall

were slightly larger in the vegetation productivity

change model than in the total land-cover change

model, indicating a greater contribution of the

rainfall variables to the model of vegetation pro-

ductivity change.

Land use alone explained about 54% of the

variance at the landform level, and 72% at the

biome level and thus had a higher explanatory

power in the vegetation productivity change model

than in the SCV model. Intensive herbaceous

agriculture showed higher changes in vegetation

productivity under average conditions than wood-

lands (Table 5). Average percentages of rangeland

in the landform unit had significantly larger

changes in vegetation productivity than wood-

lands. The only land-use type that showed less

change in vegetation productivity was forest. When

all human impact variables and interactions were

included in the model (without climate variables),

we could explain about 60% of variance at the

landform level and 80% at the biome level.

Higher fire activity had an attenuating effect on

vegetation productivity change, but this effect was

lessened with increasing proportions of rangeland

or herbaceous agriculture at the landform level.

Higher livestock densities with increasing propor-

tions of rangeland led to increasing change in

vegetation productivity at the landform level. Pro-

tection status of the land did not significantly alter

Table 5. Vegetation Productivity Change Model (DIV): Fixed Effects at Landform and Biome Levels

Model D LnDIV model fixed effects

Effect Estimate Std Error DF t value Pr > |t|

Intercept )1.8117 0.04766 7 )38.01 0.0001

Protected area )0.01824 0.01578 1421 )1.16 0.248

Ln(livestock density) 0.02318 0.01434 1421 1.62 0.1063

Ln(population density) )0.02911 0.01966 1421 )1.48 0.1388

Fire frequency )0.04325 0.01786 1421 )2.42 0.0156

Continuous herbaceous crops 0.04985 0.01988 1421 2.51 0.0123

Scattered herbaceous crops 0.0188 0.01507 1421 1.25 0.2124

Continuous tree/shrub crops 0.007654 0.0127 1421 0.6 0.5469

Scattered tree/shrub crops )0.00513 0.01157 1421 )0.44 0.6575

Intensive rangelands 0.1365 0.01882 1421 7.26 0.0001

Extensive rangelands 0.1007 0.01818 1421 5.54 0.0001

Forest )0.03758 0.01281 1421 )2.93 0.0034

Marginal lands 0.02302 0.01286 1421 1.79 0.0736

Ln(livestock dens.)*int. rangeland 0.03692 0.01077 1421 3.43 0.0006

Ln(livestock dens.)*ext.rangeland 0.04685 0.01377 1421 3.4 0.0007

Fire frequency*cont. herb. crops 0.05387 0.02518 1421 2.14 0.0326

Fire frequency*int. rangeland 0.03131 0.01204 1421 2.6 0.0094

Fire frequency*ext. rangeland 0.03521 0.0123 1421 2.86 0.0043

Protected area*ext. rangeland 0.01188 0.01183 1421 1 0.3156

Protected area*int. rangeland )0.00596 0.0108 1421 )0.55 0.5808

Rainfall variability 0.1123 0.06077 8 1.85 0.1019

Deviation from mean biome rainfall )0.1656 0.01144 1421 )14.47 0.0001

Mean annual rainfall biome level )0.2239 0.03049 1421 )7.34 0.0001

Single season )0.08965 0.02633 1421 )3.41 0.0007

Double season 0 . . . .
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the change in vegetation productivity. Neither the

parks variable nor its interaction with rangelands

was significant in the model.

Changes in Phenology: SSI Model

The random part of the phenology change model

(SSI) was changed in comparison to the total land-

cover change and vegetation productivity change

models, since the random slopes for rainfall vari-

ability were no longer significant at the 0.05 level

(r2
u1 = 0.015, Z = 1.58, p = 0.056). Hence we only

kept random intercepts in the final model, and

introduced the biome-level mean annual rainfall to

model B.

The fixed part of the model differed consider-

ably from the total land-cover change (SCV) and

vegetation productivity change (DIV) models (Ta-

ble 6). Rainfall variables explained about 28% of

the variance at the biome level and only 4% of

the variance at the landform level. The within-

biome deviation from the mean annual rainfall

had the most explanatory power, but the biome-

level mean annual rainfall did not contribute sig-

nificantly to the model. Surprisingly, the common

regression coefficient for the rainfall variability

was not significant either. There was a marked

difference in phenology changes between unimo-

dal and bimodal rainfall areas, with the former

having smaller changes in phenology. Land use

was not a strong discriminant of phenology

change. Most land-use types had similar changes

in phenology as the reference class (woodland).

Only forests and continuous fields of tree/shrub

crops showed markedly less change in phenology

than woodlands (Table 6). Total variance ex-

plained by land use was about 3%, which is much

lower than for the other models. Fire activity

generally increased changes in phenology, and

more so in intensively used rangeland areas.

Phenology change increased with increasing per-

centages of protected land, and the effect was

more important in protected rangelands. The

remaining variables did not significantly contrib-

ute to intra- and inter-biome variability of vege-

tation phenology. Residual variance at the

Table 6. Phenology Change Model (SSI): Fixed Effects at Landform and Biome Levels

Model D LnSSI model

Effect Estimate Std Error DF t value Pr > |t|

Intercept )1.9654 0.07811 7 )25.16 0.0001

Protected area 0.03265 0.01516 1430 2.15 0.0314

Ln(livestock density) )0.01652 0.01368 1430 )1.21 0.2272

Ln(population density) )0.01311 0.01894 1430 )0.69 0.4888

Fire frequency 0.04343 0.01694 1430 2.56 0.0105

Continuous herbaceous crops 0.005997 0.01911 1430 0.31 0.7537

Scattered herbaceous crops 0.001776 0.01448 1430 0.12 0.9024

Continuous tree/shrub crops )0.04091 0.01217 1430 )3.36 0.0008

Scattered tree/shrub crops )0.01762 0.011 1430 )1.6 0.1092

Intensive rangelands )0.01332 0.01775 1430 )0.75 0.4529

Extensive rangelands )0.02947 0.0174 1430 )1.69 0.0905

Forest )0.05211 0.01218 1430 )4.28 0.0001

Marginal lands 0.002428 0.01225 1430 0.2 0.8429

Ln(livestock dens.)*int. rangeland )0.00146 0.01036 1430 )0.14 0.888

Ln(livestock dens.)*ext.rangeland 0.009053 0.01309 1430 0.69 0.4893

Fire frequency*cont. herb. crops 0.03146 0.02421 1430 1.3 0.194

Fire frequency*int. rangeland 0.0419 0.01144 1430 3.66 0.0003

Fire frequency*ext. rangeland 0.01813 0.01156 1430 1.57 0.1169

Protected area*ext. rangeland 0.05525 0.01139 1430 4.85 0.0001

Protected area*int. rangeland 0.03144 0.01039 1430 3.02 0.0025

Rainfall variability 0.02554 0.01386 1430 1.84 0.0656

Deviation from mean biome rainfall )0.06602 0.011 1430 )6 0.0001

Mean annual rainfall biome level )0.08191 0.06044 1430 )1.36 0.1756

Single season )0.138 0.02489 1430 )5.54 0.0001

Double season 0 . . . .
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landform and biome levels remained high in the

full multilevel model, so the model probably

lacked key explanatory variables.

DISCUSSION

Our results clearly show that land use contributes

significantly to the vegetation response to rainfall

variability as measured by time series of MODIS

data. Areas with different types of land use react in

a different way to interannual climate variability,

leading to different values of the change indices

depending on the land-use type. Land use modified

the interannual variability of vegetation produc-

tivity (DIV) and overall change in land cover

(SCV), but had little impact on changes in phe-

nology. Land use alone explained more than 50%

of the variance in vegetation productivity changes

at the landform level, which was comparable to the

explanatory power of the climate variables (60%)

in that model. Land units under herbaceous crops

exhibited more variability in interannual vegeta-

tion productivity than woodlands, but less than

rangelands under the same climatic conditions

(Guershman and others 2003).

Our results indicate that higher livestock densi-

ties lead to increasing short-term variability in

vegetation productivity and land-cover change in

rangelands. Whilst light to moderate grazing gen-

erally stimulates plant production (McNaughton

and others 1988), Archer (2004) found that some

grazing strategies lead to consistently lower long-

term vegetation cover measures in the eastern

Karoo (South Africa), once rainfall is accounted for.

However, the links between livestock densities,

rangeland productivity and short-term rainfall

variability have not been studied at the landscape

to regional level. Although many of the grazing

systems in East-Africa are based on grazing on

unfenced land by mobile herds, herd mobility is

decreasing due to socio-economic and political

changes and increasing human population pressure

(Oba and others 2000; Homewood 2004). Hence, it

becomes more difficult for pastoralists to avoid the

adverse effects of droughts by moving animals over

long distances to better pastures. In areas with

higher livestock densities, decreased herd mobility

could aggravate the impact of rainfall variability on

vegetation productivity and land-cover change.

The contribution of fire to total land-cover

change in rangelands was mainly observed through

its impact on phenological changes, much less

through changes in vegetation productivity (Eva

and Lambin 2000). In the future, we could further

improve our understanding of the impact of fire on

short-term land-cover change by using burnt area

data instead of active fire frequency. This would

allow us to take both the frequency and the spatial

extent of the fires into account and might lead to

much clearer relationships between fire activity

and land-cover change for different land-use types

(Bucini and Lambin 2002).

Changes in phenology are mainly driven by cli-

mate variability and affect most vegetation types in

similar ways. Forests and tree/shrub crop planta-

tions showed markedly less interannual variability

in phenology (SSI), because those vegetation types

typically occur in areas with rainfall levels well

above 1,000 mm/year. At that level, rainfall is no

longer a growth limiting factor for vegetation, and

interannual variability has less impact on those

deeply rooted plants that can easily tap ground-

water reserves in times of drought (Davenport and

Nicholson 1993). However, none of the climate

variables that we used were able to explain an

important part of the variance in phenology change

at the landform level. The rainfall variability,

measuring the decadal deviations from the long-

term mean rainfall, captures both changes in tim-

ing of rainfall and changes in quantity. An indicator

reflecting only changes in timing of rainfall might

be better suited to explain short-term changes in

vegetation phenology.

Limitations of the study include the short time

record. The 3 years analyzed here are used as a

sample to represent patterns of interannual vari-

ability in land-cover conditions. However, the ab-

sence in the study period of a significant La Nina

event, which is the largest source of interannual

variance in precipitation regimes in this region,

makes this short record not fully representative. A

longer time record would also be needed to derive

implications for livestock keeping and fire use in

the region. Similarly, extending the study area

would increase the diversity in land cover and land

use types and therefore the variance in the inter-

actions between vegetation cover, climate and land

use. Another limitation is that land-use heteroge-

neity was not accounted for at the landform level.

Highly fragmented landscapes, with many small

patches of different land-use types within a land-

form are likely to have a different land-cover

change signature than landforms consisting of

more homogeneous areas of land use. Finally, one

should be aware that the analysis presented here

does not measure land cover per se but rather

surrogates for interannual variability in some land

surface conditions derived from moderate resolu-

tion remote sensing. The relatively coarse resolu-

tion of the data does not allow a full separation of
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processes of land-cover conversion (for example,

deforestation, agricultural expansion) and land-

cover modification (for example, change in range-

land productivity or in species composition).

CONCLUSION

In previous studies, it has proven very difficult to

disentangle the effects of climate variability and

human land use in remote sensing time series.

Most studies concentrated on the relationship be-

tween climate variability and land-cover change at

the pixel level, and looked at changes within bio-

mes, but ignored changes across biomes. Our

multilevel approach led to improved models of land

cover, vegetation productivity and phenology

change and clearly demonstrated that climate

influence plays at a different scale than land use

and other human use impacts. The factors that

have the highest influence on short-term variabil-

ity in land surface attributes inside and between

biomes in the study area were rainfall (mean an-

nual value and variability) and land use. Rainfall

patterns affect large areas, and local land use

determines how the vegetation cover reacts to the

rainfall variability. To understand short-term vari-

ability in land cover, we thus need to analyze both

climate and land-use patterns, as they both interact

and play a role at different spatial scales. Con-

ducting such analyses at the appropriate scales —

that is, with observations aggregated at the levels

corresponding to the different dominant processes

influencing land-cover dynamics — has proven to

be essential to understand the relative role of

multiple driving forces on land surface attributes.
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